2012 International Symposium on Extreme Ultraviolet Lithography

Brussels, Belgium 30 September – 4 October 2012

EUVL mask blank requirements toward high volume manufacturing

Hwan-Seok Seo,* Sungmin Huh, Suyoung Lee, Tae-Geun Kim, Seong-Sue Kim, and Chan-Uk Jeon

SAMSUNG Electronics

Contents

- ☐ Introduction
- **□** Blank defect requirements
 - ✓ Defectivity, Printability, Inspection, Defect mitigation, Specification for defect free mask
- Blank quality requirements
 - ✓ Contamination & Lifetime, Actinic characteristics, Roughness & Non-flatness, Absorber stack
- ☐ Summary & Conclusions

Evolution of litho technology

H. Cho, 2011 EUVL Symposium in Miami 200 KrF ArF/ArF - i Resolution (half pitch) (nm) **DPT/QPT** Quartz **EUV** LOGIC DRAM 10 **FLASH** 2003 2005 2007 2009 2011 2013 2015 2017 Year

EUV focus area in 2007-2011

2007 / 22hp	200 8 / 22hp	2009 / 22hp	2010 / 22 hp	2011 / 22hp
Reliable high power source & collector module	1. Long-term source operation with 100 W at IF and 5MJ/day	1. Mask yield & defect inspection/review infrastructure	Mask yield & defect inspection/review infrastructure	1. Long-term reliable source operation with 200 W at IF*
2. Resist resolution, sensitivity & LER met simultaneously	2. Defect free masks through lifecycle & inspection/review infrastructure	2. Long-term reliable source operation with 200 W at IF	1. Long-term reliable source operation with 200 W at IF	2. Mask yield & defect inspection/review infrastructure
3. Availability of defect free mask	3. Resist resolution, sensitivity & LER met simultaneously	Resist resolution, sensitivity & LER met simultaneously	2. Resist resolution, sensitivity & LER met simultaneously	3. Resist resolution, sensitivity & LER met simultaneously
4. Reticle protection during storage, handling and use	 Reticle protection during storage, handling and use 	EUVL manufacturing integration	EUVL manufacturing integration	EUVL manufacturing integration
5. Projection and illuminator optics quality & lifetime	Projection / illuminator optics and mask lifetime			

Ref) International EUVL Symposium Program Steering Committee, 2007 - 2011

□ Delay in source development is the top show stopper which retards successful implementation of EUVL unanimously, and then preparation of defect-free mask is the next one.

Mask related issues

Category	Issues to check
Mask blank	Defects (substrate, ML)/inspection/printability, EUVR (CW/R _{peak} /bandwidth, mean value & uniformity), Non-flatness, Surface & interface roughness, Absorber thickness & uniformity, FM process on ML or substrate
Mask process	CD control, LER/RSR, Defect mitigation (compensation) & repair, Pattern mask inspection, Cleaning durability
Wafer exposure	OPC (flare, shadow effect), Black border effect, Mask induced overlay/LWR/LCDU, Contamination from scanner (front/back)
Lifetime	Carbon contamination, Frequency of cleaning, Limit of max exposure numbers, Storage
Handling	Dual pod, pellicle(?)
Infra & Tools	Absence of actinic defect inspection & review tool

Mask blank for EUV lithography

Layer	Materials	Main Role	Current Focus	
ARC (LR)	TaON, TaO, TaBO, etc.	Inspection sensitivity @193nm	Thickness optimization for litho performances & mask process compatibility	
Absorber	TaN, TaBN, TaB, etc.	Litho performances @EUV (contrast, NILS, LWR, CDU)		
Capping	Ru, Ru alloy	Protecting ML (etch, CLN, repair, handling, exposure)	Damage (from Etch, CLN, Repair)	
ML mirror	Mo/Si 40-50 pairs	Reflection mirror @EUV	Defect, Stability, EUVR (CW, R _{peak} , BW)	
Substrate	LTEM 6025 (ULE [®] , AZ [®])	Supporting mask structure, Low thermal expansion	Defect (polish, CLN), Non-flatness	
Backside	CrN, etc.	Electrostatic chucking @EUV scanner	E-chucking damage, Bowing control	

- ☐ Material selection as well as defect control is essential for EUVL blanks to enhance mask performances.
- ☐ Blank structure should be evolved with decreasing design rule.

Defects in commercial blanks

Supplier A

Supplier B

H. Seo, 2011 EUVL Symposium in Miami

Ref) M. Goldstein (SEMATECH), 2011 EUVL Symposium Jenah Harris-Jones (SEMATECH), SPIE 2012

■ Major defect sources in ML blanks

- ✓ Substrate polishing & cleaning (small)
- ✓ Ru/ML deposition (large)
- √ Handling (very large)

Printed phase defects on the wafer

- ☐ Invisible defects by mask SEM could be printed on the wafer.
- ☐ Size of defective area on the wafer does not depend on defect size on the mask surface and pixels in BI tool.
- ☐ Actinic defect inspection and review tool are required to predict reliable defect printability.

Blank defect printability @32nm hp

Capture rate (Teron61x) & Printability (NXE3100)

- □ ~23nm in SEVD is minimum printable defect size @32nm hp node.
- ☐ Teron61x could capture most of defects with >23nm SEVD in size.

Printability estimation for next generation

- ☐ Real printability results using EUV HVM tool (0.33NA) should be updated to evaluate limit of each BI tool.
- ☐ For HVM of 22nm hp node, a new BI tool should be applied.

Defect size distribution in current blank

Defect size distribution by Teron61x (cumulative)

- ☐ Defect level dramatically increases below ~30nm in SEVD.
- ☐ Lots of defects with <23nm would be printable at 22nm hp node.
- ☐ For reliable inspection of defects with <23nm SEVD, advanced BI tools are required.

Additional defect mitigation

- ☐ To improve mask yield for HVM, additional defect mitigation process should be considered.
- ☐ Layout disposition and compensational repair are two main defect mitigation strategies.
- ☐ Prerequisites for defect mitigation
 - √ Fiducial mark on the blank
 - ✓ Defect review infra

Possibility of zero-printable defect mask

A blank with 10 defects @M1350

Defect mitigation based on M1350 data

S. Huh, Proc. of SPIE Vol. 8322, 83220K (2012)

- □ ~10 blank defects could be mitigated by blank rotation & pattern shift during e-beam writing for typical DRAM.
- Supply of blanks with ≤ 10 printable defects is essential to attain defect-free mask.

Key factors in mitigation for defect-free mask

- ☐ Total defect counts in blanks
 - ✓ Normally less defects enhance the possibility of defect-free mask but their locations are also important.
- ☐ Defect size distribution in blanks (no large defects)
 - Existence of large (killer) defects dramatically reduces the opportunity of defect-free mask. Effort to reduce large defects should be accelerated by blank suppliers.
- ☐ Defect coordinates & size accuracy, and e-beam alignment
 - ✓ Metrology tools must meet the specification.
- ☐ Reliable & defect-free FM (fiducial mark) process
 - ✓ Blank suppliers should install the process and related infra.
- ☐ Defect verification infra (AIMS[™], Wafer printing, etc.)

Issues in blank inspection: size uncertainty

- ☐ Big differences in size exist among BI tool A, B, and SEM measurements.
- ☐ Size accuracy should be guaranteed in BI tools for effective defect mitigation.

Issues in blank inspection: position accuracy

Defect position accuracy for defect mitigation is given by

$$\sigma^2(A) = \sigma^2(B) + \sigma^2(C) + \sigma^2(D)$$

Where,

A: Uncertainty of defect position under absorber

B: Inspection stage accuracy (depending on BI tool)

C: e-beam alignment accuracy to FM (~20nm)

D: e-beam stage accuracy (~3.8nm)

- Stage accuracy in current BI tool is much worse than e-beam tool.
- ☐ Stage accuracy with < 30nm is required in BI tools for reliable defect mitigation.

Roadmap for blank defect reduction

- □ Blank defect reduction has been accelerated by both suppliers. At the same time, yield of quality blank should be increased.
- □ ≤ 10 printable defects per plate in each node would be practical spec for HVM of memory device.
- ☐ Corresponding BI tool should also be commercialized on time.

Summary-1: blank defect requirements

- □ ~23nm in SEVD is minimum printable defect size for 32nm hp node but smaller defects should be controlled for HVM of 22nm hp node and beyond.
- Recently, defect reduction has been accelerated by suppliers and 1-digit numbers @60nm (M1350) were attained. More reduction and yield increase are required to produce adequate quality blanks for HVM.
- ML defect mitigation and compensational repair are two main strategies to produce defect-free masks. Accuracy in defect size & position, reliable FM process, and defect verification method should also be prepared.
- □ For memory devices, ≤10 printable blank defects might be allowed for HVM. BI tools and blanks to meet the requirements need to be prepared on time.

Reticle contamination from EUV scanner

✓ Front side contamination

✓ Backside contamination

Courtesy of C. Jeong

- ☐ Reticle contamination from scanner is one of the big concerns.
- ☐ Maintenance of system cleanliness as well as development of related infra (e.g. pod, pellicle?) and mask process (e.g. cleaning) is required.

Lifetime of EUV reticle

Ref) R. Jonckheere, Proc. of SPIE Vol. 8352, 83520U

Ref) A. Rastegar, 2011 EUVL Symposium in Miami

- ☐ Due to absence of pellicle & high power of source, MTBC (mean time between cleanings) of EUV reticle is much shorter than optical reticle.
- ☐ Lifetime of EUV reticle considering max frequency & cycle of EUV exposure and cleaning should be determined.
- ☐ Improvement of blank material and cleaning process is also required to enhance durability of mask (i.e. less CD & reflectivity changes and Ru damage).

Actinic wavelength characteristics

- Non-uniformity of actinic reflectivity in blank results in CD error on the wafer.
- Especially, deviation of CW from target value results in global CD error. To make min CD error due to mask CW, we need to consider...
 - ✓ Max broadband mask reflectivity to make min dose & CD variation (Optimal CW = 13.52±0.01nm for NXE3100)
 - ✓ Min apodization to make small mask induced telecentricity & pattern displacement (Optimal CW = 13.54±0.01nm for NXE3100)
 - ✓ Mean CW spec for NXE3100 = 13.53±0.014nm

Ref) N. Davydova, Proc. of SPIE Vol. 8166, 816624-6 (ASML)

☐ However, mean CW variation of current commercial blank is 2-3x larger than ASML's spec.

Center wavelength (CW) optimization

☐ Preliminary simulation results

CD error due to 0.04nm CW non-uniformity

0.33NA

CW = 13.53 + /-0.014 nm

(ASML spec)

0.25NA

CD error as a function of NA & CW range

Remarks: Broadband spectrum & variations in illumination are not applied in the simulation

-0.2

-0.4

0.25NA

- Mean CW variation results in CD error on the wafer pattern.
- ☐ Current mean CW range & non-uniformity in blanks give rise to -0.3 to 0.5nm (1x) CD errors on the wafer.

0.33NA

Real CW in current blank

Spec for actinic wavelength characteristics

ASML's spec for the actinic wavelength of ML for NXE3100

Parameter	Specification	Status
Mean center wavelength (CW)	13.53 nm	8
Mean center wavelength shift	≤ 0.1 % (13.516 - 13.543 nm)	8
Mean FWHM of reflectivity vs. wavelength	≥ 0.5 nm	
Max range of bandwidth @FWHM	0.005 nm	©
Max range of center wavelength	0.04 nm	(2)
Mean peak reflectivity	≥ 67 %	8
Max range of peak reflectivity	0.3 %	(2)

- ☐ CW, peak reflectivity, bandwidth at actinic wavelength and their mean values & uniformity should be tightly controlled.
- Spec for actinic characteristics depends on optics (illumination cone & diffraction angle) of EUV scanner. Thus, revised spec for NXE3300 should be prepared and applied for EUV ML blank.

Roughness of EUV mask

Pre-correctable during e-beam writing 1/(1 mm) 1/(10 µm) = 10⁻⁶/nm = 0.0001/nm**LSFR** ES-chuck EUV wave Projection optics wafer I **Pattern shift & Overlay** error due to non-flatness $\Delta = \sigma \times \tan(2\sigma_s + 6^\circ) \times M$ due to local slope $\Delta = 2\sigma_s z/M$ Δ < 1.0 nm

 $\rightarrow \sigma_{c} < 1.5 \text{ mrad}$

 $\rightarrow \sigma < 38 \text{ nm}$

M x NA / λ

1/(250 nm)
= 0.004/nm

Scattering angle of about 15 degrees

1/(50 nm) = 0.02/nm

Spatial frequency

MSFR

Light is scattered within the aperture of the optics

Random phase variation & Pattern shift

- ① Line width roughness LWR = $\sqrt{2}(2\sigma_s)z/M$
- ② Image placement error $\Delta = 2\sigma_c z/M$
- ③ Speckle

4 Aberration

LWR <1.8 nm $\rightarrow \sigma_s$ < 1.8 mrad σ < 0.15 nm Light is scattered outside the angular acceptance of the optics

HSFR

Loss in reflectivity & Inspection noise

 $R/R_0 = \exp[-(4\pi\sigma/\lambda)^2]$

2 % reflectivity loss $\rightarrow \sigma < 0.15 \text{ nm}$

Light scattered from the individual interfaces of the multilayer coating no longer adds in phase and the effect of the roughness is diminished

Courtesy of J. Choi

σ: roughness (Δh), σ_s: local slope (φ),

z: defocus distance at the wafer (±90nm),

M: magnification ratio of the optics (0.25),

NA: numerical aperture of the optics

Reference: E. Gullikson, "Proposed specification of EUVL mask substrate roughness," 2nd International EUVL Symposium (2003). SEMI P37-1102, SEMI Standard Specification for Extreme Ultraviolet Lithography Mask Substrates (2002).

S. Yoshitake, et. al, EUV Mask Flatness & Carrier/Loadport Workshop (2006)

Blank non-flatness effects on wafer overlay

Current overlay budget for EUVL

- □ Portion of reticle non-flatness term is regarded as ~14% of total wafer overlay budget.
- ☐ Continuous improvement of non-flatness as well as development of flatness compensation technique is essential.

ML roughness effects on blank inspection

system roughness / system noise 1nm high bump or pit nuisance /false count rate = 1

Ref) G. Inderhees, PMJ (2011)

per 142 x 142 mm² mask

From simulations

Ref) T. Liang, 2011 EUVL Symposium in Miami

- ML roughness results in background noise during blank inspection.
- **Next generation BI tool should discriminate between printable** defects and roughness noise.
- ☐ High frequency surface roughness should be reduced and roughness spec for reliable BI should be established for HVM of 22nm node.

Absorber stack requirements

Item	Requirements	
Materials	Currently, Ta-based alloy is usual. Compositions could be determined by lithography & mask process.	
Defects	Should be manageable (size & numbers) considering mask repair capability.	
Thickness (AR + Abs)	H-V bias and black border effect could be calibrated by OPC & mask process (e.g. ML etch @border). Optimum thickness should be determined considering lithography performance & mask process compatibility (inspection, etch,).	
Thickness variation*	$\pm0.5\%$ of thickness	
Reflectivity @wavelength*	• Actinic R < 2 % @13.395-13.665nm • DUV R \leq 25 % @130-320 nm (need to check PMI sensitivity) • Visible wavelength contrast to ML \geq 14 % @470nm • IR R \leq 80 % @780-860nm, 50-80 % @860-920nm, \leq 80 % @920-1000nm, \leq 90 % @1000-2000nm	

Summary-2: blank quality requirements

- ☐ Due to absence of pellicle & high source power, contamination from scanner & handling is much severe in EUV mask. Lifetime of EUV reticle considering max frequency of EUV exposure and cleaning should be determined.
- ☐ To minimize CD error on the wafer, CW, R_{peak}, & bandwidth of ML at actinic wavelength must be tightly controlled. Revised spec for HVM tool should also be prepared and applied for ML blank.
- Non-flatness & roughness in blank increase wafer overlay error and noise level in BI tools, respectively. They should be reduced below target values for HVM.
- ☐ Spec for absorber stack needs to be determined considering lithography performance and mask process compatibility.

Conclusions

- EUVL mask and blank requirements for HVM are discussed.
- Defect reduction and quality improvement of EUVL blank have been progressed step by step in the past decade. For HVM, however, we need breakthrough on the on-time development of related technologies & infrastructures as well as blank itself.
- ☐ From now on, we need to determine the specifications for HVM and focus on the attainments.

Thank you for attention!

